Howard Berg

Karen Fahrner

Basarab Gabriel Hosu

Thibault Roland

Abhishek Shrivastava

Linda Turner Stern

Navish Wadhwa


Rowland Institute         Harvard University
     
 

Howard C. Berg


Herchel Smith Professor of Physics
Professor of Molecular and Cellular Biology
Curriculum Vitae

Email:

Harvard University
Department of Molecular and Cellular Biology
Harvard Biological Labs
16 Divinity Avenue, Room 3063A
Cambridge, MA 02138
Phone: 617-495-0924, Fax: 617-496-1114

Rowland Institute at Harvard
100 Edwin H. Land Blvd.
Cambridge, MA 02142
Phone: 617-497-4636, Fax: 617-497-4627

Flagellated bacteria possess a remarkable motility system based on a reversible rotary motor linked by a flexible coupling (the proximal hook) to a thin helical propeller (the flagellar filament). The motor derives its energy from protons driven into the cell by chemical gradients or electrical fields. The direction of the motor rotation depends in part on signals generated by sensory systems, of which the best studied analyzes chemical stimuli. Our research group is trying to learn how the motor works, the nature of the signal that controls the motor's direction of rotation, and how this signal is processed by the chemical sensory system. These questions are being approached by a variety of molecular-genetic and physical techniques. The goal is an understanding of flagellar motility and sensory transduction at the molecular level.

For a list of all publications.

Books

Berg, H.C., Random Walks in Biology. (Princeton, Princeton, 1983). Expanded edition, 1993.

Berg, H.C., E. coli in Motion. (Springer-Verlag, NY, 2004).

Selected Publications

On problems in atomic physics:

Berg, H.C. and Kleppner, D. Storage technique for atomic hydrogen. Rev. Sci. Instr. 33, 248-249 (1962).

Berg, H.C. Spin exchange and surface relaxation in the atomic hydrogen maser. Phys. Rev. 137, A1621-A1634 (1965).

On the separation of macromolecules according to mass:

Berg, H.C. and Purcell, E.M. A method for separating according to mass a mixture of macromolecules or small particles suspended in a fluid, I. Theory. Proc. Natl. Acad. Sci. USA 58, 862-869 (1967).

Berg, H.C., Purcell, E.M. and Stewart, W.W. ..., II. Experiments in a gravitational field. ibid, pp. 1286-1291.

Berg, H.C. and Purcell, E.M. ..., III. Experiments in a centrifugal field. ibid, pp. 1821-1828.

On the structure of cell membranes:

Berg, H.C., Diamond, J.M. and Marfey, P.S. Erythrocyte membrane: Chemical modification. Science 150, 64-67 (1965).

Berg, H.C. Sulfanilic acid diazonium salt: A label for the outside of the human erythrocyte membrane. Biochim. Biophys. Acta 183, 65-78 (1969).

Whiteley, N.M. and Berg, H.C. Amidination of the outer and inner surfaces of the human erythrocyte membrane. J. Mol. Biol. 87, 541-561 (1974).

On the motile behavior of microorganisms: 1971 - 1980

Berg, H.C. How to track bacteria. Rev. Sci. Instr. 42, 868-871 (1971).

Berg, H.C. and Brown, D.A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500-504 (1972).

Berg, H.C. and Anderson, R.A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380-384 (1973).

Berg, H.C. and Brown, D.A. Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Addendum. Antibiotics and Chemotherapy 19, 55-78 (1974).

Berg, H.C. Bacterial behaviour. Nature 254, 389-392 (1975).

Berg, H.C. Chemotaxis in bacteria. Annu. Rev. Biophys. Bioeng. 4, 119-136 (1975).

Berg, H.C. and Tedesco, P.M. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci., USA 72, 3235-3239 (1975).

Berg, H.C. How spirochetes may swim. J. Theor. Biol. 56, 269-273 (1976).

Manson, M.D., Tedesco, P., Berg, H.C., Harold, F.M. and van der Drift, C. A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. USA 74, 3060-3064 (1977).

Berg, H.C. and Purcell, E.M. Physics of chemoreception. Biophys. J. 20, 193-219 (1977).

Berg, H.C., Bromley, D.B. and Charon, N.W. Leptospiral motility. Symp. Soc. Gen. Microbiol. 28, 285-294 (1978).

Berg, H.C. The tracking microscope. Adv. Opt. Elect. Microsc. 7, 1-15 (1978).

Berg, H.C. and Turner, L. Movement of microorganisms in viscous environments. Nature 278, 349-351 (1979).

On the motile behavior of microorganisms: 1981 - 1990

Segall, J.E., Manson, M.D. and Berg, H.C. Signal processing times in bacterial chemotaxis. Nature 296, 855-857 (1982).

Lapidus, I.R. and Berg, H.C. Gliding motility of Cytophaga sp. strain U67. J. Bacteriol. 151, 384-398 (1982).

Block, S.M., Segall, J.E. and Berg, H.C. Impulse responses in bacterial chemotaxis. Cell 31, 215-226 (1982).

Block, S.M., Segall, J.E. and Berg, H.C. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312-323 (1983).

Ishihara, A., Segall, J.E., Block, S.M. and Berg, H.C. Coordination of flagella on filamentous cells of Escherichia coli. J. Bacteriol. 155, 228-237 (1983).

Block, S.M. and Berg, H.C. Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309, 470-472 (1984).

Segall, J.E, Ishihara, A. and Berg, H.C. Chemotactic signaling in filamentous cells of Escherichia coli. J. Bacteriol. 161, 51-59 (1985).

Segall, J.E., Block, S.M. and Berg, H.C. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 83, 8987-8991 (1986).

Meister, M., Lowe, G. and Berg, H.C. The proton flux through the bacterial flagellar motor. Cell 49, 643-650 (1987).

Meyer, P.W., Matus, I.J. and Berg, H.C. Avoidance of Phycomyces in a controlled environment. Biophys. J. 51, 425-437 (1987).

Berg, H.C. A physicist looks at bacterial chemotaxis. Cold Spring Harbor Symp. Quant. Biol. 53, 1-9 (1988).

Blair, D.F. and Berg, H.C. Restoration of torque in defective flagellar motors. Science 242, 1678-1681 (1988).

Block, S.M., Blair, D.F. and Berg, H.C. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514-517 (1989).

Wolfe, A.J. and Berg, H.C. Migration of bacteria in semisolid agar. Proc. Natl. Acad. Sci. USA 86, 6973-6977 (1989).

Schnitzer, M.J., Block, S.M., Berg, H.C. and Purcell, E.M. Strategies for chemotaxis. Symp. Soc. Gen. Microbiol. 46, 15-34 (1990). 

On the motile behavior of microorganisms: 1991- 2000

Budrene, E.O. and Berg, H.C. Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630-633 (1991).

Block, S.M., Blair, D.F. and Berg, H.C. Compliance of bacterial polyhooks measured with optical tweezers. Cytometry 12, 492-496 (1991).

Fahrner, K.A., Block, S.M., Krishnaswamy, S., Parkinson, J.S. and Berg, H.C. A mutant hook-associated protein (HAP3) facilitates torsionally-induced transformations of the flagellar filament of Escherichia coli. J. Mol. Biol. 238, 173-186 (1994).

Berg, H.C. and Turner, L. Cells of Escherichia coli swim either end forward. Proc. Natl. Acad. Sci. USA 92, 477-479 (1995).

Fung, D.C. and Berg, H.C. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375, 809-812 (1995).

Budrene, E.O. and Berg, H.C. Dynamics of formation of symmetric patterns by chemotactic bacteria. Nature 376, 49-53 (1995).

Ehlers, K.M., Samuel, A.D.T. , Berg, H.C. and Montgomery, R. Do cyanobacteria swim using traveling surface waves? Proc. Natl. Acad. Sci. USA 93, 8340-8343 (1996).

Berg, H.C. Symmetries in bacterial motility. Proc. Natl. Acad. Sci. USA 93, 14225-14228 (1996).

Scharf, B.E., Fahrner, K.A., Turner, L. and Berg, H.C. Control of direction of flagellar rotation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 95, 201-206 (1998).

Samuel, A.D.T., Pitta, T.P., Ryu, W.S., Danese, P.N., Leung, E.C.W. and Berg, H.C. Flagellar determinants of bacterial sensitivity to X-phage. Proc. Natl. Acad. Sci. USA 96, 9863-9866 (1999).

Berg, H.C. Motile behavior of bacteria. Physics Today 53 (1), 24-29 (2000).

Ryu, W.S., Berry, R.M. and Berg, H.C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444-447 (2000).

Turner, L., Ryu, W.S. and Berg, H.C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793-2801 (2000).

On the motile behavior of microorganisms: 2001 - 2010

Skerker, J.M. and Berg, H.C. Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 98, 6901-6904 (2001).

Sourjik, V. and Berg, H.C. Receptor sensitivity in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 99, 123-127 (2002).

Sourjik, V. and Berg, H.C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 99, 12669-12674 (2002).

Berg, H.C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19-54 (2003).

Fahrner, K.A., Ryu, W.S. and Berg, H.C. Bacterial flagellar switching under load. Nature 423, 938 (2003).

Gabel, C.V., and Berg, H.C. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc. Natl. Acad. Sci. USA 100, 8748-8751 (2003).

Darnton, N., Turner, L., Breuer, K. and Berg, H.C. Moving fluid with bacterial carpets. Biophys J 86, 1863-1870 (2004).

Jaffe, J.D., Miyata, M. and Berg, H.C. Energetics of gliding motility in Mycoplasma mobile. J. Bacteriol. 186, 4254-4261 (2004).

DiLuzio, W.R., Turner, L., Mayer, M., Garstecki, P., Weibel, D.B., Berg, H.C. and Whitesides, G.M. Escherichia coli swim on the right-hand side. Nature 435, 1271-1274 (2005).

Berg, H.C. Q&A Howard Berg. Curr. Biol. 15, R189-R190 (2005).

Vaknin, A. and Berg, H.C. Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli.Proc. Natl. Acad. Sci. USA 103, 592-596 (2005).

Shimizu, T.S., Delalez, N., Pichler, K. and Berg, H.C. Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: absence of feedback from the flagellar motors , Proc. Natl. Acad. Sci. USA 103, 2093-2097 (2005).

Darnton, N.C. and Berg, H.C. Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys. J. 92, 2230-2236 (2007).

Darnton, N.C., Turner, L., Rojevsky, S. and Berg, H.C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189, 1756-1764 (2007).

Sourjik, V., Vaknin, A., Shimizu, T.S. and Berg, H.C. In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Meth. Enzymol. 423, 365-391 (2007).

Blair, K., Turner, L., Winkelman, J., Berg, H.C. and Kearns, D.B. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320, 1636-1638 (2008).

Yuan, J. and Berg, H.C. Resurrection of the flagellar rotary motor near zero load. Proc. Natl. Acad. Sci. USA 105, 1182-1185 (2008).

Tu, Y. Shimizu, T.S. and Berg, H.C. Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad. Sci. USA,105, 14855-14860 (2008).

Berg, H.C. Quick guide: Bacterial flagellar motor. Curr. Biol. 18, R689-R691 (2008).

Zhang, R., Turner, L., and Berg, H.C. The upper surface of an Escherichia coli swarm is stationary. Proc. Nat'l Acad. Sci. USA 5, 288-290.

Darnton, N.C., Turner, L., Rojevsky, S., and Berg, H.C. Dynamics of bacterial swarming. Biophys. J., 98, 2082-2090 (2010).

Shimizu, T.S., Tu, Y., and Berg, H.C. A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol. Sys. Biol., 6, 382 (2010).

Turner, L., Zhang, R., Darnton, N., and Berg, H.C. Visualization of flagella during bacterial swarming. J. Bacteriol. 192, 3259-3267 (2010).

Yuan, J., Fahrner, K.A., Turner, L., and Berg, H.C. Asymmetry in the clockwise and counter-clockwise rotation of the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 107, 12846-12849 (2010).

On the motile behavior of microorganisms: 2011 -

Yuan, J., Branch, R., Hosu, B.G., and Berg, H.C. Adaptation at the output of the chemotaxis signalling pathway. Nature 484, 233-236 (2012).

Turner, L., Stern, A.S., and Berg, H.C. Growth of flagellar filaments of Escherichia coli is independent of filament length. J. Bacteriol. 194, 2437-2442 (2012).

Lele, P.P., Branch, R.W., Nathan, V.S.J., and Berg, H.C. Mechanism for adaptive remodeling of the bacterial flagellar switch. Proc. Natl. Acad. Sci. (2012), doi:10.1073/pnas.1212327109.

Tu, Y., and Berg, H.C. Tandem adaptation with a common design in Escherichia coli chemotaxis. J. Mol. Biol. 423, 782-788 (2012).

Yuan, J., and Berg, H.C. Ultrasensitivity of an adaptive bacterial motor. J. Mol. Biol. 425, 1760-1764 (2013).

Stern, A.S., and Berg, H.C. Single-file diffusion of flagellin in flagellar filaments. Biophys. J. 105, 182-184 (2013).

Lele, P.P., Hosu, B.G., and Berg, H.C. Dynamics of mechanosensing in the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 110, 11839-11844 (2013).

Berg, H.C. News & Views: Turning failure into function. Nature Physics 9, 460-461 (2013).

Branch, R.W., Sayegh, M.N., Shen, C., Nathan, V.S.J., and Berg, H.C. Adaptive remodelling by FliN in the bacterial rotary motor. J. Mol. Biol. 426, 3314-3324 (2014).

Ping, L., Wu, Y., Hosu, B.G., Tang. J.X., and Berg, H.C. Osmotic pressure in a bacterial swarm. Biophys. J. 107, 871-878 (2014).

Wang, F., Yuan, J., and Berg, H.C. Switching dynamics of the bacterial flagellar motor near zero load. Proc. Natl. Acad. Sci. USA 111, 15752-15755 (2014).

Berg, H., and Blagoev, K. Perspectives on working at the physics-biology interface. Phys. Biol. 11, 050301 (2014).

Shrivastava, A., Lele, P.P., and Berg, H.C. A rotary motor drives Flavobacterium gliding. Current Biol. 25, 338–341 (2015).

Lele, P.P., and Berg, H.C. Switching of bacterial flagellar motors triggered by mutant FliG. Biophys. J. 108, 1275-1280 (2015).

Fahrner, K.A., and Berg, H.C. Mutations that stimulate flhDC expression in Escherichia coli. J. Bacteriol. 197, 3087-3096 (2015).

Lele, P.P., Shrivastava, A., Roland, T., and Berg, H.C. Response thresholds in bacterial chemotaxis, Science Adv. 2015; 1:e1500299, 8 pp.

Shrivastava, A., and Berg, H.C. Towards a model for Flavobacterium gliding. Curr. Opin. Microbiol. 28, 93-97 (2015).

Lele, P.P., Roland, T., Shrivastava, A., Chen, Y., and Berg, H.C. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward. Nature Phys. 12: 175-178 (2016).

Hosu, B.G., Nathan, V.S.J., and Berg, H.C. Internal and external components of the bacterial flagellar motor rotate as a unit. Proc. Natl. Acad. Sci. USA 113, 4783-4787(2016).

Turner, L., Ping, L., Neubauer, M., and Berg, H.C. Visualizing flagella while tracking bacteria. Biophys. J., (2016) in press.