Combining FRET and Mass Spectrometry to Study the Dynamics of Double-stranded Oligonucleotide Anions

Joel H. Parks

The Rowland Institute at Harvard
Cambridge, MA
Overview

- Fluorescence Measurements
 - Trapped fluorophore ions
 - FRET
 - Fluorescence of trapped oligonucleotides

- Progress towards study of dissociation of DNA duplexes with FRET and MS
 - Intermediate state model
 - Duplex fluorescence/MS data

- Conclusions and future work
Biopolymer Dynamics in Gas Phase

- Observe dynamics in the absence of bulk water
 - Electrostatics
 - Hydrodynamic effects

- Correlating changes in fluorescence intensity of trapped biopolymer ions with changes in structure

- Dependence on:
 - Temperature
 - Level of Hydration
 - Charge State
 - Background Denaturants
Gas phase analyses of DNA duplexes

Electrospray ionization of DNA duplexes

- Doktycz, M. J., Habibi-Goudarzi, S., McLuckey, S. A.
 Anal. Chem. 1994, 66, 3416-3422
- Gale, D. C., Goodlett, D. R., Light-Wahl, K. J., Smith, R. D.

BIRD © dissociation rates of duplexes to single strands

- Schnier, P. D., Klassen, J. S., Strittmatter, E. F., Williams, E. R.
 J. Am. Chem. Soc. 1998, 120, 9605-9613

CID © dissociation may be multistep process

- Gableica, V., De Pauw, E.
Dissociation of DNA duplexes

- Heat trapped duplexes to induce dissociation

Mass Spectrometry

Schnier, P. D., Klassen, J. S., Strittmatter, E. F., Williams, E. R.
J. Am. Chem. Soc. 1998, 120, 9605-9613
Dissociation of DNA duplexes

- Modify single strands with fluorophores
- Heat trapped duplexes to induce dissociation
- Monitor changes in fluorescence

Fluorescence Mass Spectrometry
Fluorescence Apparatus

$I_L \sim 0.5 \text{ MW/cm}^2$

150 μm beam width

$2\omega/3\omega$

Nd:YAG Laser

4ω

20 ns pulse width

$\Delta \Omega/4\pi \sim 5 \times 10^{-3}$

Detection Optics

PMT

LλF

NF

$|L|$
Laser - Ion Cloud Geometry

\[I \sim N_{hv} = n_{ion} \delta v_{hv} \]

\[\frac{\delta v_{hn}}{v_{cloud}} \sim 0.03 - 0.07 \]
Laser-Induced Fluorescence of Trapped Ions

- Minimize scatter **during** excitation to achieve zero background
- Necessary for short fluorescent lifetimes (~2-5 ns)

 Enables:

 - Large dynamic range for threshold studies
 - Small N (~10-50) for FCS

Space Charge Limited Fluorescence

Fluorescence Intensity (arb. units)

N Stored Ion Number

q_z = 0.61 140K
q_z = 0.61 300K
q_z = 0.38 140K
q_z = 0.38 300K
Fluorescence Analysis of Biopolymer Dynamics

- Use fluorescence measurements to monitor conformational changes of biopolymers in gas phase

- Fluorescence Resonance Energy Transfer
 - Correlate changes in fluorescence intensity with changes in average conformation

![Diagram](image-url)
FRET Pair

BODIPY TMR

BODIPY TR

Normalized Signal vs. Wavelength/nm
Intermediate State Model

Model Sequence: AATTAATCCGGCCG

K_{12} K_{23}

~ Two-State Transition
Effect of \(<R>\) on Donor Fluorescence

\[<R>/R_0 = 0.61\]

\[<R>/R_0 = 1.0\]

\[<R>/R_0 = 0.84\]

\[<R>/R_0 = 1.35\]
Nanospray Mass Spectrum

TR - AATTAATCCGGCCG
TMR - TTAATTAGGCCGGC

60/20/20 Acetonitrile/Water/Isopropanol
Isolated Duplex Fluorescence

T = 117°C

~400 ions in δν_{hv}
Threshold Fluorescence: D-7 Duplex

![Graph showing fluorescence intensity vs. temperature](image)

- **SS-Donor**
- **D-7 Duplex**
Summary/Conclusions

- Fluorescence Measurements of trapped biopolymers provide sufficient sensitivity for dynamics studies.

- FRET fluorescence correlated with mass spectrometry shows promise as a probe of the intermediate states of DNA duplexes.
Research Plans

- Fluorescence Measurements
 - DNA duplex intermediate states
 - Bubbles in ~30 complementary pairs
 - Hairpin closure rates
 - DNA non-covalent complexes

- Correlation Fluorescence Spectroscopy
Support

Colleagues
Allison S. Danell
Joseph T. Khoury
Heidi Behrens

Research Funding: Rowland Institute