Sign of the refractive index in a gain medium with negative permittivity and permeability

Yi-Fan Chen, Peer Fischer, and Frank W. Wise
Department of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853

Received April 25, 2005; revised July 21, 2005; accepted July 22, 2005

We show how the sign of the refractive index in any medium may be derived using a rigorous analysis based on Einstein causality. In particular, we consider left-handed materials, i.e., media that have negative permittivities and permeabilities at the frequency of interest. We find that the consideration of gain in such media can give rise to a positive refractive index. © 2006 Optical Society of America

1. INTRODUCTION

Crucial to the treatment of electromagnetic wave propagation is the connection between the signs of the electric permittivity \(\varepsilon \) and the magnetic permeability \(\mu \) and that of the refractive index. The wave vector \(\vec{k}(\omega) \) (and ultimately the index) is related to the square root of \(\varepsilon(\omega)\mu(\omega) \), which leaves the sign ambiguous. One way to determine the sign of the refractive index is by a numerical simulation of Maxwell’s equations (see Refs. 1 and 2). From the wave evolution with proper initial conditions, the sign of the refractive index can be inferred. However, analytical justification of the sign of the refractive index has the advantages of generality and physical insight. In prior work, this has been based on the assertion that the directions of energy flux and the group velocity must point away from the radiation source (see Refs. 3–6). From this assertion, one may conclude that any medium for which the phase velocity is oppositely directed to the energy flux or group velocity will exhibit negative refraction, including the lossless systems for which both the real part of the electric permittivity \(\varepsilon \) and the real part of the magnetic permeability \(\mu \) are simultaneously negative\(^5,6\) and the lossy systems where these values need not be simultaneously negative.\(^5,6\) However, the assertion itself is not true in general. It has been known for some time that in certain systems (both passive and active) the group velocity can actually point toward the source. This has been observed experimentally and can be understood as a pulse-reshaping phenomenon (Ref. 7 and references therein). It also has been pointed out that it is the front velocity that must satisfy the requirement of Einstein causality.\(^7,9\) The front velocity must therefore point away from the source. The directions of phase velocity, group velocity, and energy flux then follow and can point in either direction depending on the details of the material response. Our discussion relies equally on (i) the implications of causality for the sign of the index and (ii) the introduction of gain in the system. Although our formalism is general, we focus on left-handed materials (LHMs),\(^10\) i.e., media that have \(\varepsilon, \mu < 0 \) at the frequency of interest,\(^3\) and we show that some LHMs give rise to positive refraction.

2. DETERMINING THE SIGN OF THE REFRACTIVE INDEX

We employ a rigorous analysis of causal wave propagation as first discussed by Sommerfeld and Brillouin.\(^11\) The wave equations for a homogeneous isotropic linear medium in a source-free region are

\[
\begin{align*}
\n\vec{\nabla}^2 \vec{E}(r, \omega) &= -\omega^2 \varepsilon(\omega) \vec{\mu}(\omega) \vec{E}(r, \omega) \\
\n\n\vec{\nabla}^2 \vec{B}(r, \omega) &= -\omega^2 \varepsilon(\omega) \vec{\mu}(\omega) \vec{B}(r, \omega)
\end{align*}
\]

\(\vec{E}(r, \omega) \) and \(\vec{B}(r, \omega) \) are the complex Fourier transforms of the corresponding real fields \(E(r, t) \) and \(B(r, t) \), where the Fourier transforms in Eqs. (1) are defined as

\[
\vec{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \exp(i\omega t) dt.
\]

The vector equations have a common form for each Cartesian component and can be simplified to

\[
\frac{\partial^2 \vec{g}(z, \omega)}{\partial z^2} = -\omega^2 \varepsilon(\omega) \vec{\mu}(\omega) \vec{g}(z, \omega),
\]

if we consider a general plane wave propagating in the \(+z \) direction. Equation (3) has the time-domain Green’s function solutions

\[
\begin{align*}
\vec{g}(z, t) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \vec{g}(z, \omega) \exp(-i\omega t) d\omega \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp[i(\vec{k}(\omega)z - \omega t)] d\omega.
\end{align*}
\]

\(\vec{k}(\omega) \) is in general not single valued because of the branch cuts created when we take the square root, and Einstein causality is needed to determine the correct branch of \(\vec{k}(\omega) \). More precisely, with \(\vec{\varepsilon}(\omega) = [\varepsilon(\omega)] \exp(i\phi_\varepsilon) \) and \(\vec{\mu}(\omega) = [\mu(\omega)] \exp(i\phi_\mu) \), the two branches are \(\vec{k}(\omega) = \pm \omega \sqrt{[\varepsilon(\omega)] [\mu(\omega)]} \exp[i(\phi_\varepsilon + \phi_\mu)/2] \), with a corresponding refractive index \(\vec{n}(\omega) = \pm c \sqrt{[\varepsilon(\omega)] [\mu(\omega)]} \exp[i(\phi_\varepsilon + \phi_\mu)/2] \).
3. \(\tilde{\varepsilon}\) AND \(\tilde{\mu}\) IN A TWO-LEVEL SYSTEM

We now express the permittivity and the permeability in terms of their underlying molecular polarizabilities and magnetizabilities. The expressions are equivalent to those obtained from a Lorentz oscillator model.

The isotropic component of the complex polarizability \(\tilde{\alpha}\) for a two-level system is given by

\[
\tilde{\alpha} = \frac{2\omega_{mg}|g|\langle \mathbf{p}|m\rangle|^2}{3[\omega_{mg}^2 - (\omega + i\Gamma)^2]},
\]

where \(\langle \mathbf{g}|\mathbf{p}|m\rangle\) is the electric dipole transition moment between the ground state \(g\) and the excited state \(m\). \(\omega_{mg}\) is the angular transition frequency and \(\Gamma\) is the half-width at half-maximum of the Lorentzian spectrum (\(\Gamma > 0\)).

In media for which

\[
\tilde{\varepsilon} = \varepsilon_0 \left(1 + \frac{N\tilde{\alpha}}{\varepsilon_0}\right),
\]

the electric permittivity is given by

\[
\tilde{\varepsilon} = \varepsilon_0 \left(1 + \frac{2\omega_{mg}N|g|\langle \mathbf{p}|m\rangle|^2}{3\varepsilon_0\omega_{mg}^2 - (\omega + i\Gamma)^2}\right),
\]

where \(N\) is the number density, and where we can define

\[
\phi_{\varepsilon} = |\langle \mathbf{g}|\mathbf{e}|\mathbf{m}\rangle|,
\]

\[
\phi_{\mu} = |\langle \mathbf{g}|\mathbf{\mu}|\mathbf{m}\rangle|,
\]

the three possible types of zero-pole pairs are shown for LHM: (a) \(F > 0\) and \(G > 0\), (b) \(F < 0\) and \(G > 0\), (c) \(F < 0\) and \(G < 0\). The one not shown corresponds to (b) with \(\varepsilon\) and \(\mu\) exchanged.

![Diagram of zero-pole pairs](image)

Table 1. Four Types of LHM

<table>
<thead>
<tr>
<th>Type</th>
<th>(\phi_{\varepsilon})</th>
<th>(\phi_{\mu})</th>
<th>(\text{Re}[\tilde{\alpha}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>((\pi/2) < \phi_{\varepsilon} < \pi)</td>
<td>((\pi/2) < \phi_{\mu} < \pi)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Type II</td>
<td>(-\pi < \phi_{\varepsilon} < (\pi/2))</td>
<td>((\pi/2) < \phi_{\mu} < \pi)</td>
<td>(> 0)</td>
</tr>
<tr>
<td>Type III</td>
<td>((\pi/2) < \phi_{\varepsilon} < \pi)</td>
<td>(-\pi < \phi_{\mu} < (\pi/2))</td>
<td>(> 0)</td>
</tr>
<tr>
<td>Type IV</td>
<td>(-\pi < \phi_{\varepsilon} < (\pi/2))</td>
<td>(-\pi < \phi_{\mu} < (\pi/2))</td>
<td>(< 0)</td>
</tr>
</tbody>
</table>

\(F\) and \(G\) are Defined in Eqs. (9) and (10) and \(\phi_{\varepsilon} = (\phi_{\varepsilon} + \phi_{\mu})/2\).
where negative. This is shown in Fig. 1 where it is seen that the signs of negative for some range of zeros and poles determine be drawn for only one of the species is inverted, then we may have systems. Considering a two-component system, we assume suppose that this may, at least in principle, be achieved in a multicomponent system or in certain multilevel systems. From Eq. (9) it follows that the structures of the zeros and poles determine \(\phi_n \). In the case of a noninverted Lorentz oscillator, the contribution from the zero-pole pair yields a positive \(\phi_n \), whereas for the inverted system, \(\phi_n \) is negative. This is shown in Fig. 1 where it is seen that the contribution from the zero-pole pair yields a positive \(\phi_n \) for a noninverted Lorentz oscillator, whereas for the inverted system, \(\phi_n \) is negative. Similar conclusions may be drawn for \(\phi_n \) from Eq. (10).

The angles \(\phi_{\mu} = (\phi_\mu + \phi_n)/2 \) and \(\phi_n = \phi_{\mu}/2 \) are determined by the zeros and poles of both \(\tilde{\varepsilon}(\omega) \) and \(\tilde{\mu}(\omega) \). For the subsequent discussion, we consider the cases for which the sign of \(F \) and \(G \) in Eqs. (9) and (10) can independently vary. We suppose that this may, at least in principle, be achieved in a multicomponent system or in certain multilevel systems. Considering a two-component system, we assume that in a certain frequency range the electric permittivity is dominated by one molecular species whereas the magnetic permeability is dominated by the other species. If only one of the species is inverted, then we may have \(F \) and \(G \) of opposite sign. Similarly, in an inverted one-component multilevel system there may be nearby lying states that have electric dipole allowed, but magnetic dipole forbidden transitions, such that the polarizability and magnetizability, which respectively underlie \(\tilde{\varepsilon}(\omega) \) and \(\tilde{\mu}(\omega) \), are of opposite sign. If for these systems we describe \(\tilde{\varepsilon}(\omega) \) and \(\tilde{\mu}(\omega) \) by an effective Lorentz oscillator model, then we have the following possible combinations: \(F, G > 0 \), \(F \) and \(G \) of opposite sign, and \(F, G < 0 \). Figure 2 shows three of the four possible combinations described above.

4. FOUR TYPES OF LEFT-HANDED MATERIAL

A left-handed medium requires \(F \) in Eq. (9) and \(G \) in Eq. (10) to be large compared with \(F \), such that \(|\phi_\mu| \) and \(|\phi_n| \) exceed \(\pi/2 \), and such that both \(\text{Re}[\tilde{\varepsilon}(\omega)] \) and \(\text{Re}[\tilde{\mu}(\omega)] \) are negative for some range of \(\omega \). However, since \(\phi_n \) = \((\phi_n/2)/2 \) and since \(\phi_\mu \) and \(\phi_n \) can be of either sign, \(|\phi_n| \) can be smaller than \(\pi/2 \) depending on the specific form of the zero-pole pair structure. Hence, a LHM does not necessarily need to have a negative refractive index. Table 1 lists the four possible combinations. To our knowledge only the passive LHM with a negative refractive index (type I) has been discussed previously (see, for instance, Refs. 19 and 20). In fact, additional types of LHM are possible if the materials are allowed to have multiple resonances. In this case it can be shown that an isotropic medium can give rise to negative refraction even if the permittivity and the permeability are both positive.21 Such right-handed media are particularly promising for the observation of negative refraction and associated phenomena at optical frequencies, and we discuss their remarkable properties elsewhere.21

5. LEFT-HANDED MATERIALS WITH \(n > 0 \)

In the following we discuss the optical properties of propagating waves in type II and type III LHMs, i.e., LHMs that give rise to positive refraction. We do not consider evanescent waves; and to simplify the discussion, we neglect the imaginary parts of the permittivity and the permeability. Since the refractive indices for type II and type III LHMs are positive, it follows that a light beam that traverses an interface formed by a type II or type III LHM and an ordinary material will experience ordinary (positive) refraction. In Fig. 3 we show the boundary conditions for such an interface.

The two possible wave vectors of the refracted ray, \(\mathbf{k}_r \) and \(\mathbf{k}_s \), both satisfy the boundary conditions. The correct solution can be identified only with recourse to Einstein causality (and not the direction of the Poynting vector). Since the LHM is assumed to be of type II or type III, its refractive index is positive and given by

\[
\begin{align*}
|k_2| = \sqrt{\frac{\varepsilon_2 \mu_2}{\varepsilon_1 \mu_1}} > 0, \\
\end{align*}
\]

such that \(k_2 \) is unphysical and must be rejected.

Fig. 3. Boundary conditions for an interface between an ordinary material \((\varepsilon_1, \varepsilon_2 > 0)\) and a type II or type III LHM \((\varepsilon_1, \varepsilon_2 < 0)\). Two conditions have to be met: (i) the transverse components of the wave vectors must be the same across the boundary \((k_x = k_x = k_s)\), and (ii) the ratio of the magnitudes of the transmitted wave vector to that of the incidence wave vector must satisfy \(|k_y|/|k_x|^2 = (|k_s|/|k_x|)^2 = (\varepsilon_2 \mu_2)/|\varepsilon_1 \mu_1|\).
It is interesting to consider reflection and transmission at the boundary depicted in Fig. 3. The Fresnel equations are readily derived. For an incident beam with \mathbf{E} perpendicular to the plane of incidence, we obtain

$$

t_\perp = \left(\frac{E_i}{E_t} \right)_\perp = \frac{2 \sin \theta_i \cos \theta_i}{\sin \theta_i \cos \theta_i - \frac{\mu_1}{\mu_2} \sin \theta_i \cos \theta_i},
$$

(12)

Similarly, for the case of \mathbf{E} parallel to the plane of incidence, we have

$$
\begin{align*}
 r_\parallel &= \left(\frac{E_r}{E_i} \right)_\parallel = -\frac{\mu_1}{|\mu_2|} \sin \theta_i \cos \theta_i - \sin \theta_i \cos \theta_i \\
 t_\parallel &= \left(\frac{E_i}{E_t} \right)_\parallel = \frac{2 \sin \theta_i \cos \theta_i}{\sin \theta_i \cos \theta_i - \frac{\mu_1}{|\mu_2|} \sin \theta_i \cos \theta_i},
\end{align*}
$$

(13)

where θ_i is the angle of incidence and θ_t is the angle of refraction. The reflectance R and transmittance T are correspondingly given by

$$
\begin{align*}
 R_\perp &= r_\perp^2, \\
 T_\perp &= -\left(\frac{\mu_1}{|\mu_2|} \right) \left(\frac{n_2}{n_1} \right) \cos \theta_i t_\perp^2, \\
 R_\parallel &= r_\parallel^2, \\
 T_\parallel &= -\left(\frac{\mu_1}{|\mu_2|} \right) \left(\frac{n_2}{n_1} \right) \cos \theta_i t_\parallel^2,
\end{align*}
$$

(14)

where the refractive index of the ordinary material n_1 is

$$
n_1 = +\sqrt{\frac{\varepsilon_1 \mu_1}{\varepsilon_0 \mu_0}} > 0.
$$

(15)

Energy conservation across the boundary holds as Eqs. (14) satisfy

$$
R_\perp + T_\perp = R_\parallel + T_\parallel = 1.
$$

(16)

This is to be expected, as any solution (including both the retarded and the advanced solution) that satisfies Maxwell’s equations will necessarily also satisfy Poynting’s equation:
\[\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{S} = 0, \]

where \(\mathbf{S} \) is the Poynting vector (the energy flux) and \(u \) is the energy density.

However, it is surprising that \(T \) is negative at such a boundary [see Eqs. (14)]. It follows that energy is transported across the boundary out of the LHM. The energy flux thus points in the direction opposite to the wave vector of the transmitted wave (as is the case for all types of LHM where \(\mathbf{S} \) is opposite to \(\mathbf{k} \), regardless of the sign of their refractive indices). This is schematically shown in Fig. 4.

Furthermore, since energy is conserved \((R+T)=1\), it follows that the reflectance \(R \) must be greater than unity. The energy needed to amplify the reflected beam is derived from the LHM, which is assumed to have gain and thus must have been pumped. Enhanced reflection from an amplifying medium is not restricted to a LHM. Cybulski and Silverman have observed reflectances of 2 to 3 from an optically pumped gain medium.\(^{22,23}\)

Figure 5 shows reflectance and transmittance curves for the boundary of a left-handed gain medium with an ordinary material. We take \(\mu_2=-\mu_1 \) and \(\varepsilon_2=-1.5\varepsilon_1 \). Anomalously high \(R \) and \(T \) are predicted near an angle of incidence \(\theta_s \sim 50^\circ \). From Eqs. (12) one can see that the angle for which \(R \) and \(T \) become infinite would correspond to Brewster’s angle for an interface where the second material’s permittivity and permeability have the same magnitude but are of the opposite (positive) sign. The singularity’s permittivity and permeability have the same magnitude but are of the opposite (positive) sign. The singularity is clearly unphysical and is a consequence of unrealistic assumptions, such as a constant gain of the inverted medium\(^{22}\) and neglect of imaginary parts of permeability and permittivity. Inclusion of the imaginary parts will remove the infinity of \(R \) and \(T \) in Eqs. (13) that leads to the singularity in Fig. 5.\(^{24}\) Nevertheless, it is clear that enhanced reflection can be expected at the boundary of a LHM with gain.

6. CONCLUSIONS

We discuss how the sign of the refractive index in any medium may be rigorously derived using a theory of causal wave propagation.\(^{7,8,11,15}\) In particular, we consider the connection between Einstein causality and the real part of the refractive index for media that have negative permittivities and permeabilities (LHM). We find that isotropic LHMs that are in their ground state can exhibit negative refraction, whereas LHMs that have gain, i.e., are (partially) inverted, do not necessarily have a negative index of refraction. We introduce four different types of LHM and predict that two of them will give rise to positive refraction. We also discuss reflection at the boundary of a left-handed gain medium.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (PHY-0099564, CHE-0095056). P. Fischer, is grateful for a grant from the Eppley Foundation for Research. Yi-Fan Chen’s e-mail address is yc245@cornell.edu.

REFERENCES AND NOTES

10. In the present context left-handed and right-handed are unrelated to chirality.

14. Because of a material’s finite bandwidth, \(\bar{\varepsilon}(\omega) \to \varepsilon_1 \) and \(\bar{\mu}(\omega) \to \mu_1 \) as \(|\omega| \to \infty \).

16. The field \(\phi(z,t) \) due to an arbitrary source \(s(t) \) located at \(z=0 \) is given by \(\phi(z,t)=(1/\sqrt{2\pi})\int^t_{-\infty} [s(t')g(z,t-t')] dt' \). Given that \(g(z,t)=0 \) for \(t<z/c \), the field \(\phi(z,t) \) depends only on the source \(s(t) \) for a time later than \(t>z/c \), such that the onset of the disturbance (see Ref. 11) propagates at exactly the speed \(c \).

18. To simplify the presentation in Figs. 1 and 2, we have shown only the zero-pole pair for positive frequencies. More generally, \(\phi_1 \) and \(\phi_2 \) are determined by both the positive and the negative frequency zero-pole pairs. However, since the zero-pole structure is always symmetric with respect to \(\text{Re}[\omega]=0 \), the contribution to \(\phi_1 \) and \(\phi_2 \) from the zero-pole pair on the negative frequency side is always smaller in magnitude and is of opposite sign when \(\omega>0 \). The sign of \(\phi_1 \) and \(\phi_2 \) is thus fully determined by the zero-pole pair on the positive frequency side. Furthermore, the magnitude of the contribution to \(\phi_1 \) and \(\phi_2 \) from the zero-pole pair on the positive frequency side is \(|\tan^{-1}[\Gamma/(\omega_\text{zero}+\omega)] - \tan^{-1}[\Gamma/(\omega_{\text{zero}}+\omega)] | \) and it is negligibly small if \(\omega_{\text{zero}} \gg \Gamma \) and \(\omega_{\text{zero}} \gg \Gamma \). In this case, \(\phi_1 \) and \(\phi_2 \) are entirely determined by the zero-pole pair on the positive frequency side. Our results do not rely on this particular simplification and they apply to the general case where the contribution from the negative frequency zero-pole pairs is included.

20. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.:
When the denominator in Eqs. (13) $\to 0$, then $r \to \infty$ and $t \to \infty$. To determine the angle of incidence θ_i at which this occurs, note that the denominator can be expressed as $\frac{\sin \theta_i}{\sqrt{1 - \frac{\mu_2^2}{\mu_1^2}\sin^2 \theta_i}}$. For the example considered in the text where $\mu_2 = -\mu_1$ and $\mu_1 > 0$, the denominator vanishes when $\frac{(n_1 \sin \theta_i)/n_2}{\sqrt{1 - (n_1^2/n_2^2)\sin^2 \theta_i}} = \cos \theta_i$. This yields $\frac{[(n_1^2 - n_2^2)/n_1^2]\sin^2 \theta_i = [(n_1^2 - n_2^2)/n_1^2]\cos^2 \theta_i}$, and the singularity occurs when $\tan \theta_i = (n_2/n_1)$. It then follows that the inclusion of the imaginary part of ϵ_2 (which yields a complex n_2) removes the singularity, since this relation can no longer be satisfied for a real angle of incidence θ_i.

