Analysis of Molecular Transformations and Light Manipulation with Optical Microresonators
Frank Vollmer and Juraj Topolancik
The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd., Cambridge, MA 02142

Optical Microcavities
- High-Q whispering gallery modes (WGMs) (Q~10^6).
- Highly sensitive to refractive index (polarizability) perturbations.
- Evanescent field probing of ultra-thin molecular layers.
- Sensitive to molecular binding events and changes within the structure of immobilized molecules.
- Binding events and conformational changes conveyed as shift in resonant frequency of WGMs.

Bacteriorhodopsin
- Model biological membrane system.
- Known 3D structure. Highly oriented, optically anisotropic system. Large polarizability changes upon isomerization.
- Self-assembles as a monolayer.
- Technologically important biological photochrome. Applications in photonics and optoelectronics.
- Shares structure with G-protein coupled receptors.

Trans-cis isomerization and orientation of the retinal
- Photoinduced all-trans to 13-cis isomerization of the chromophore retinal monitored off-resonance with a 1,310nm probe.
- Novel pump-probe spectroscopy tool.
- Direct measurements of polarizabilities of molecules in complex proteo-lipid environments.
- Average retinal polarizability change:
 \[\langle \Delta \alpha_{\text{mol}} \rangle = \frac{1}{2} \langle \Delta \alpha \rangle_{\text{mol}} + 2 \langle \Delta \sigma \rangle_{\text{mol}} \approx 0.384 \text{ a.u.} \]
- Direct orientation measurements of molecular self assembles TE/TM resonant shift:
 \[\Delta \lambda \approx \frac{1}{2} \left(1 + \cos^2 \theta \right) - 10 \left(\sin \theta \right) - 6 \theta \]

All-optical switching in the near-infrared
- All-optical resonant coupler.
- Optical functionality provided by ultra-thin molecular layer.
- Operation at frequencies far from bR molecular transitions.
- Full-linewidth shift achieved by multiple bR layering (bR/PDAC).
- Switching speed limited by the speed of the photochromic transitions (~50µs).
- Faster all-optical switching at arbitrary optical frequencies with molecular monolayers is possible.