Electron Autodetachment of Oligonucleotide Anions in the Gas Phase
Allison S. Danell and Joel H. Parks
ROWLAND INSTITUTE AT HARVARD, 100 EDWIN LAND BLVD., CAMBRIDGE, MA 02142

Presented at the 51st Annual ASMS Conference on Mass Spectrometry and Allied Topics
Montreal, 2003

This poster was originally presented in large format, but it was modified for easier reading/downloading from the web.
Trapped oligonucleotide anions have been observed to undergo sequential loss of charge as a function of temperature.

- No changes in the deconvoluted mass spectra occur with the formation of lower charge state ions, indicating that the charge loss is the result of electron autodetachment detachment.
- Electron autodetachment rates vary as a function of temperature, charge state, and sequence.
- The variation of the rates suggest that conformational fluctuations of single-stranded oligonucleotides play a role in the decay process.
Analytes
- Oligonucleotides purchased from Synthegen (Houston, TX)
- 5 to 10 µM in 70/20/10 MeOH/H₂O/trifluoroethanol

Instrumentation
- Custom-built quadrupole ion trap
 - Ω = 600 kHz, z₀ = 3 mm
 - nanoESI source
- Temperature-controlled trap assembly and He background gas
 - Electrodes and He inlet seated in copper housing
 - Copper housing resistively heated with Watlow model 965 temperature controller
 - Aluminum oxide spacers
 - Heating to ~ 170°C
- Leybold Inficon Quadrex 200 Residual Gas Analyzer (RGA) mounted on vacuum system
METHODS

Eject and detect

q_z (4- ion) = 0.50

Typical scan function

Static P of He
~ 0.4 mTorr

Hold ions in trap
(Varied 0 – 900 s)

Pulsed P of He
~1 mTorr

Inject

Isolate

Time

tTo f amplitude

RESULTS

Initial observation of charge state conversion
- Initially observed conversion of $M^{n-} \rightarrow M^{(n-1)-}$ under thermal and temporal conditions used for FRET experiments [1]
 - Ion population conserved (see absolute intensity scales for mass spectra below)
 - Laser excitation not required
- Rate equations solved to describe first order exponential decay/growth curves observed
- Rates increased with charge state and temperature

Mass spectra of $(T_7\text{-dye})^{4-}$ at varied heating times at 123°C.
(a) 0 s (isolation of 4- charge state); (b) 30 s; (c) 960 s.

Rates of $4- \rightarrow 3-$ and $3- \rightarrow 2-$ for $T_7\text{-dye}$ as $f(T)$

4- \rightarrow 3- \rightarrow 2- for $T_7\text{-dye}$ as f(t) at 123°C
RESULTS

Charge state conversion of underivatized oligonucleotides

- Process of $M^{n-} \rightarrow M^{(n-1)-}$ also observed from underivatized oligonucleotides (see $A_7^{3-} \rightarrow A_7^{2-}$ below)

Mass spectra of $(A_7)^{3-}$ at varied heating times at 102°C.
(a) 0 s (isolation of 3- charge state); (b) 240 s.

3- \rightarrow 2- for A_7, as f(t) at 102°C
RESULTS

- All 7-mer oligonucleotides studied underwent charge state conversion
- For most sequences (except ATATATA), charge state conversion was only process observed
- Rates of charge state conversion varied with sequence
- Sequence dependence persisted over T range

3- → 2- for various oligonucleotide 7-mers as f(t) at 102°C

3- → 2- rates for 7-mers as f(T) (see legend above left)
Electron autodetachment

- \(M^{n-} \rightarrow M^{(n-1)-} \) phenomenon proposed to occur via electron autodetachment
- Electron autodetachment occurs due to Coulomb repulsion in multiply charged anions
 - In small rigid molecules, has been shown to vary for different structural isomers having different electron charge separations \([2, 3]\)
 - Has been shown to occur following vibrational heating via multiphoton infrared absorption \([4]\)
 - Theoretical calculations describe transfer of vibration to electronic energy \([5]\)
- Electron autodetachment from oligonucleotides dominated by conformation-induced changes in charge separation
 - Single-stranded oligonucleotide conformations very flexible and vary as a function of
 - charge state
 - temperature
 - base composition
RESULTS

- Other dissociation or ion/molecule reactions are not likely causes of observation of \(M^{n-} \rightarrow M^{(n-1)-} \) because
 - Total ion population conserved
 - Likely product ions from dissociation of oligonucleotides would appear above cutoff m/z of \(~300\) Da
 - No trend observed in variation of rates of charge loss as a function of He pressure
 - RGA measurements indicate no contaminants present and no change in background gases except \(~3x\) increase in water vapor from room to elevated temperatures
RESULTS

Molecular dynamics simulations

- Initial calculations of $(T_7)^{3^-}$ and $(T_7)^{2^-}$ performed [6]
 - Insight II software, 298 K, extensible systematic forcefield optimized for vacuum
 - Negative charges localized on phosphate groups
 - Structures illustrate flexibility of single-stranded oligonucleotides

![Structures illustrating flexibility](image)
Understanding parameters affecting electron autodetachment rates

- **Fluctuations in conformation**
 - increased fluctuations \rightarrow decreased $<\text{charge separation}>$ \rightarrow decreased detachment energy barrier

- **Charge State**
 - increased charge state \rightarrow increased Coulomb repulsion

- **Temperature**
 - increased population of higher vibrational modes \rightarrow increased flexibility and increased probability of electronic curve-crossing
 - increased internal energy (RRKM) may contribute energy to excitation of vibrational modes

- **Sequence**
 - Flexibility of oligonucleotides correlated with base stacking interactions [7]
 - Dielectric screening of Coulomb fields vary with polarizability of nucleotides

- Molecular dynamics simulations required for further understanding
REFERENCES

 For more information on FRET experiments, see TPK # 197.